10,477 research outputs found

    Characterization of the Vacuum Birefringence Polarimeter at BMV: Dynamical Cavity Mirror Birefringence

    Full text link
    We present the current status and outlook of the optical characterization of the polarimeter at the Bir\'{e}fringence Magn\'etique du Vide (BMV) experiment. BMV is a polarimetric search for the QED predicted anisotropy of vacuum in the presence of external electromagnetic fields. The main challenge faced in this fundamental test is the measurement of polarization ellipticity on the order of 10−15{10^{-15}} induced in linearly polarized laser field per pass through a magnetic field having an amplitude and length B2L=100 T2m{B^{2}L=100\,\mathrm{T}^{2}\mathrm{m}}. This challenge is addressed by understanding the noise sources in precision cavity-enhanced polarimetry. In this paper we discuss the first investigation of dynamical birefringence in the signal-enhancing cavity as a result of cavity mirror motion.Comment: To appear in the 2019 CPEM special issue of IEEE Transactions on Instrumentation and Measuremen

    Noise characterization for resonantly-enhanced polarimetric vacuum magnetic-birefringence experiments

    Full text link
    In this work we present data characterizing the sensitivity of the Bir\'{e}fringence Magnetique du Vide (BMV) instrument. BMV is an experiment attempting to measure vacuum magnetic birefringence (VMB) via the measurement of an ellipticity induced in a linearly polarized laser field propagating through a birefringent region of vacuum in the presence of an external magnetic field. Correlated measurements of laser noise alongside the measurement in the main detection channel allow us to separate measured sensing noise from the inherent birefringence noise of the apparatus. To this end we model different sources of sensing noise for cavity-enhanced polarimetry experiments, such as BMV. Our goal is to determine the main sources of noise, clarifying the limiting factors of such an apparatus. We find our noise models are compatible with the measured sensitivity of BMV. In this context we compare the phase sensitivity of separate-arm interferometers to that of a polarimetry apparatus for the discussion of current and future VMB measurements

    Entanglement Scrambling in 2d Conformal Field Theory

    Get PDF
    We investigate how entanglement spreads in time-dependent states of a 1+1 dimensional conformal field theory (CFT). The results depend qualitatively on the value of the central charge. In rational CFTs, which have central charge below a critical value, entanglement entropy behaves as if correlations were carried by free quasiparticles. This leads to long-term memory effects, such as spikes in the mutual information of widely separated regions at late times. When the central charge is above the critical value, the quasiparticle picture fails. Assuming no extended symmetry algebra, any theory with c>1c>1 has diminished memory effects compared to the rational models. In holographic CFTs, with c≫1c \gg 1, these memory effects are eliminated altogether at strong coupling, but reappear after the scrambling time t≳ÎČlog⁥ct \gtrsim \beta \log c at weak coupling.Comment: 52 pages, 7 figure; v2: references adde

    Reflection high-energy electron diffraction analysis of polycrystalline films with grain size and orientation distributions

    Get PDF
    We report a computationally efficient algorithm to calculate reflection high-energy electron diffraction (RHEED) intensities from well-textured, small-grained polycrystalline films in the kinematic limit. We also show how the intensity maps of the spots in a RHEED pattern from such a film can be quantitatively analyzed to determine the film's average grain size, as well as its in-plane orientation and texture distributions. We find that the in-plane orientation and texture distribution widths of these films can be determined to within 1 degree and that the average lateral grain size can be measured to within a fraction of a nanometer after suitable calibration of our technique

    The Role of Shame in Student Persistence and Help-Seeking

    Get PDF
    This thesis examined students’ lived experiences of shame in university and how this emotion interacts with factors related to student persistence (such as, motivation, self-efficacy, sense of belonging) and help-seeking. Previous studies have demonstrated that shame can negatively impact factors related to student persistence, but researchers have yet to investigate how experiencing shame impacts students during their academic studies. All sources of data were collected through semi-structured interviews (n=7) with shame-prone, undergraduate, domestic students. Following the interview participants had the opportunity to participate in an optional 10-day journaling activity (n=3). All data were analyzed following an Interpretative Phenomenological Analysis, resulting in the creation of six super ordinate themes: Processing Shame, Impact on Self, Motivation, Belonging, Factors That Promote Help-Seeking, and Factors That Deter Help-seeking, and 32 subordinate themes. This study demonstrates students’ experiences of shame impacting their motivation, sense of belonging, self-efficacy, and identity. Participants also shared difficulties seeking help in moments after experiencing shame. These findings provide evidence that shame impedes students’ persistence, and acts as a barrier to seeking help when struggling. This thesis reiterates the need for universities to design policies and programming that understands how during times of struggles students are less likely to reach out for support, and such initiatives should be structured to address this issue

    Infrared testing of electronic components Final report, 5 Apr. 1965 - 5 Jun. 1966

    Get PDF
    Infrared radiation nondestructive test technique for electrical/electronic equipmen

    [TiII] and [NiII] emission from the strontium filament of eta Carinae

    Full text link
    We study the nature of the [TiII] and [NiII] emission from the so-called strontium filament found in the ejecta of eta Carinae. To this purpose we employ multilevel models of the TiII and NiII systems which are used to investigate the physical condition of the filament and the excitation mechanisms of the observed lines. For the TiII ion, for which no atomic data was previously available, we carry out ab initio calculations of radiative transition rates and electron impact excitation rate coefficients. It is found that the observed spectrum is consistent with the lines being excited in a mostly neutral region with an electron density of the order of 10710^7 cm−3^{-3} and a temperature around 6000 K. In analyzing three observations with different slit orientations recorded between March~2000 and November~2001 we find line ratios that change among various observations, in a way consistent with changes of up to an order of magnitude in the strength of the continuum radiation field. These changes result from different samplings of the extended filament, due to the different slit orientations used for each observation, and yield clues on the spatial extent and optical depth of the filament. The observed emission indicates a large Ti/Ni abundance ratio relative to solar abundances. It is suggested that the observed high Ti/Ni ratio in gas is caused by dust-gas fractionation processes and does not reflect the absolute Ti/Ni ratio in the ejecta of \etacar. We study the condensation chemistry of Ti, Ni and Fe within the filament and suggest that the observed gas phase overabundance of TiComment: 14 paginas, 12 figure

    Genetic and physical mapping of DNA replication origins in Haloferax volcanii

    Get PDF
    The halophilic archaeon Haloferax volcanii has a multireplicon genome, consisting of a main chromosome, three secondary chromosomes, and a plasmid. Genes for the initiator protein Cdc6/Orc1, which are commonly located adjacent to archaeal origins of DNA replication, are found on all replicons except plasmid pHV2. However, prediction of DNA replication origins in H. volcanii is complicated by the fact that this species has no less than 14 cdc6/orc1 genes. We have used a combination of genetic, biochemical, and bioinformatic approaches to map DNA replication origins in H. volcanii. Five autonomously replicating sequences were found adjacent to cdc6/orc1 genes and replication initiation point mapping was used to confirm that these sequences function as bidirectional DNA replication origins in vivo. Pulsed field gel analyses revealed that cdc6/orc1-associated replication origins are distributed not only on the main chromosome (2.9 Mb) but also on pHV1 (86 kb), pHV3 (442 kb), and pHV4 (690 kb) replicons. Gene inactivation studies indicate that linkage of the initiator gene to the origin is not required for replication initiation, and genetic tests with autonomously replicating plasmids suggest that the origin located on pHV1 and pHV4 may be dominant to the principal chromosomal origin. The replication origins we have identified appear to show a functional hierarchy or differential usage, which might reflect the different replication requirements of their respective chromosomes. We propose that duplication of H. volcanii replication origins was a prerequisite for the multireplicon structure of this genome, and that this might provide a means for chromosome-specific replication control under certain growth conditions. Our observations also suggest that H. volcanii is an ideal organism for studying how replication of four replicons is regulated in the context of the archaeal cell cycle. © 2007 Norais et al

    Dependence of inner-shell vacancy production upon distance in hard Li-Al collisions

    Get PDF
    We match the predictions of molecular-dynamics simulations of 1.2 keV and 2.0 keV 7Li+ scattered from Al(100) to observed total Li atom spectra measured by time-of-flight spectroscopy. In doing so we determine the relevant parameters in a simple distance of closest approach model for the probability of production of single and double vacancies in the Li 1s shell during hard Li-Al collisions. In the standard Fano-Lichten model of vacancy production, vacancies are produced with unit probability if the collision is hard enough to force the collision partners past some critical distance of closest approach. We find that such an assumption is insufficient to fit our simulations to experimental observations, and that we must allow for a gradual turning on of the vacancy production probability as the distance of closest approach decreases. The resulting model may be useful in modeling atomic excitation effects in simulations of other ion-impact processes
    • 

    corecore